CHAPTER ONE
INTRODUCTION
1.0 Background of the Study
Immunization is the process by which an individual’s immune system becomes fortified against an agent (known as the immunogen). When this system is exposed to molecules that are foreign to the body, called non-self, it will orchestrate an immune response, and it will also develop the ability to quickly respond to a subsequent encounter because of immunological memory. This is a function of the adaptive immune system. Therefore, by exposing an animal to an immunogen in a controlled way, its body can learn to protect itself; this is called active immunization (Okwor, et al., 2012)The most important elements of the immune system that are improved by immunization are the T cells, B cells, and the antibodies B cells produce. Memory B cells and memory T cells are responsible for a swift response to a second encounter with a foreign molecule. Passive immunization is the direct introduction of these elements into the body, instead of the production of these elements by the body itself. Immunization is done through various techniques, most commonly vaccination. Vaccines against microorganisms that cause diseases can prepare the body’s immune system, thus helping to fight or prevent an infection. The fact that mutations can cause cancer cells to produce proteins or other molecules that are known to the body forms the theoretical basis for therapeutic cancer vaccines. Other molecules can be used for immunization as well, for example in experimental vaccines against nicotine (NicVAX) or the hormone gherkin in experiments to create an obesity vaccine. Immunizations are definitely less risky and an easier way to become immune to a particular disease by risking a milder form of the disease itself. They are important for both adults and children in that they can protect us from the many diseases out there. Through the use of immunizations, some infections and diseases have almost completely been eradicated throughout the United States and the World. One example is polio. Thanks to dedicated health care professionals and the parents of children who are vaccinated on schedule, polio has been eliminated in the U.S. since 1979 (American Pharmaceutical Association , 2013). Polio is still found in other parts of the world so certain people could still be at risk of getting it. This includes those people who have never had the vaccine, those who didn’t receive all doses of the vaccine, or those travelling to areas of the world where polio is still prevalent. Immunization is the most precious gift that a health care worker can give a child and it remains the most cost-effective preventative health intervention presently known (South Africa, 2003; Cameroun, 2009). Vaccines are sensitive biological substances that gradually lose their potency with time (World Health Organization , 1998) and this loss of potency can be accelerated when stored out of the recommended range of temperature (WHO, 2004). Any loss of potency in a vaccine is permanent and irreversible. Consequently, proper storage of vaccines at the recommended temperature conditions is vital so that vaccines’ potency is retained up to the moment of administration (WHO, 1998).
Before the development and wide use of human vaccines, few people survived childhood without experiencing a litany of diseases including measles, mumps, rubella, chickenpox, whooping cough, and rotavirus diarrhoea. In addition to these universal diseases of childhood, thousands of children each year suffered or succumbed to life-threatening episodes of paralytic poliomyelitis, diphtheria, or bacterial meningitis caused by Haemophilus influenza type b (Hib) or Streptococcus pneumonia (Sutter, et al., 1999).
Vaccines are considered to be one of the most cost-effective preventive measures against certain diseases, and the Centers for Disease Control and Prevention (CDC) declared vaccinations to be one of the top 10 public health achievements of the 20th century (WHO, 1998), vaccinations have saved millions of lives since their introduction more than 200 years ago (WHO, 2004).
Community pharmacists are uniquely placed to provide support and advice to the general public compared with other health care professionals. The combination of location and accessibility means that most consumers have ready access to a pharmacy where health professional advice is available on-demand (Bradshaw et al., 1998). A high level of public trust and confidence in pharmacists’ ability to advise on non-prescription medicines is afforded to community pharmacists (Pharmacy Research UK., 2009). Although there is a general global move to liberalize non-prescription markets, pharmacies in many countries still are the main suppliers of non-prescription medicines (Tisman, 2010). Pharmacists are therefore in a position to facilitate consumer self-care and self-medication, which needs to be built on and exploited.
A recent survey of public health leaders (Rambhia, et al., 2009) identified pharmacists as playing a key role in vaccine administration and pandemic planning. Evidence in published medical literature suggests that pharmacies are uniquely positioned to influence previously difficult-to-reach populations (Crawford, et al., 2011; Westrick, 2010). A review of pharmacy-led immunization programs (Francis and Hinchliffe, 2011) concluded that pharmacies might be especially effective in immunizing high-risk, older adults who are more likely to need prescription medications and, therefore, use pharmacy services. Pharmacist interventions have been shown to improve medication adherence (Jiang, et al., 2010), provide increased access to health care expertise and advice, and perform a variety of primary care services (Taitel, et al., 2011).
Rutter, (2015) in his submission noted that the pharmacy has a long history of facilitating self-care, however, more than ever before, pharmacists and their staff are being provided opportunities to expand their contributions which include involvement in routine immunization. Although considerable barriers still exist if the community pharmacy is to maximize its potential there is an urgent need to ask about pharmacists’ ability and readiness to embrace change especially as it relates to vaccine storage (Rutter, 2015).
1.1 Type of Vaccines
Vaccines are dead or inactivated organisms or purified products derived from them. There are several types of vaccines in use (National Institute of Allergy and Infectious Disease, 2012). These represent different strategies used to try to reduce the risk of illness while retaining the ability to induce a beneficial immune response.
Inactivated Vaccines
Some vaccines contain inactivated, but previously virulent, micro-organisms that have been destroyed with chemicals, heat, radiation, or antibiotics. Examples are influenza, cholera, bubonic plague, polio, hepatitis A, and rabies vaccines.
Attenuated Vaccines
Some vaccines contain live, attenuated microorganisms. Many of these are active viruses that have been cultivated under conditions that disable their virulent properties, or that use closely related but less dangerous organisms to produce a broad immune response. Although most attenuated vaccines are viral, some are bacterial in nature. Examples include the viral diseases yellow fever, measles, rubella, and mumps, and the bacterial disease typhoid. The live Mycobacterium tuberculosis vaccine developed by Calmette and GuĂ©rin is not made of a contagious strain but contains a virulently modified strain called “BCG” used to elicit an immune response to the vaccine. The live attenuated vaccine containing strain Yersinia pestis EV is used for plague immunization. Attenuated vaccines have some advantages and disadvantages. They typically provoke more durable immunological responses and are the preferred type for healthy adults. But they may not be safe for use in immunocompromised individuals, and may rarely mutate to a virulent form and cause disease
Toxoid
Toxoid vaccines are made from inactivated toxic compounds that cause illness rather than micro-organism. Examples of toxoid-based vaccines include tetanus and diphtheria. Toxoid vaccines are known for their efficacy. Not all toxoids are for micro-organisms; for example, Crotalus atrox toxoid is used to vaccinate dogs against rattlesnake bites.
Subunit Vaccines
Protein subunit rather than introducing an inactivated or attenuated micro-organism to an immune system (which would constitute a “whole-agent” vaccine), a fragment of it can create an immune response. Examples include the subunit vaccine against Hepatitis B virus that is composed of only the surface proteins of the virus (previously extracted from the blood serum of chronically infected patients, but now produced by recombination of the viral genes into yeast), the virus-like particle (VLP) vaccine against human papillomavirus (HPV) that is composed of the viral major capsid protein, and the hemagglutinin and neuraminidase subunits of the influenza virus. Subunit vaccine is being used for plague immunization.
conjugate vaccines
Certain bacteria have polysaccharide outer coats that are poorly immunogenic. By linking these outer coats to proteins (e.g., toxins), the immune system can be led to recognize the polysaccharide as if it were a protein antigen. This approach is used in the Haemophilus Influenzae type B vaccine
Experimental Vaccines
A number of innovative vaccines are also in development and in use, they include;
Dendritic cell vaccines
They combine dendritic cells with antigens in order to present the antigens to the body’s white blood cells, thus stimulating an immune reaction. These vaccines have shown some positive preliminary results for treating brain tumours (Kim and Liau, 2010) and are also tested in malignant melanoma (Anguille, et al., 2014).
Recombinant Vector
By combining the physiology of one micro-organism and the DNA of the other, immunity can be created against diseases that have complex infection processes
DNA vaccination
An alternative, experimental approach to vaccination called DNA vaccination, created from an infectious agent’s DNA, is under development. The proposed mechanism is the insertion (and expression, enhanced by the use of electroporation, triggering immune system recognition) of viral or bacterial DNA into human or animal cells. Some cells of the immune system that recognize the proteins expressed will mount an attack against these proteins and cells expressing them. Because these cells live for a very long time, if the pathogen that normally expresses this protein is encountered at a later time, they will be attacked instantly by the immune system. One potential advantage of DNA vaccines is that they are very easy to produce and store. As of 2015, DNA vaccination is still experimental and is not approved for human use (Arce-Fonseca, et al., 2015)
T-cell receptor peptide vaccines
These are under development for several diseases using models of valley fever, stomatitis, and atopic dermatitis. These peptides have been shown to modulate cytokine production and improve cell-mediated immunity.
Targeting of identified bacterial proteins
Targeting identified bacterial proteins that are involved in complement inhibition would neutralize the key bacterial virulence mechanism (Meri, et al., 2008).
While most vaccines are created using inactivated or attenuated compounds from micro-organisms, synthetic vaccines are composed mainly or wholly of synthetic peptides, carbohydrates, or antigens.
Valence
Vaccines may be monovalent (also called univalent) or multivalent (also called polyvalent). A monovalent vaccine is designed to immunize against a single antigen or single microorganism (Scot, 2004)). A multivalent or polyvalent vaccine is designed to immunize against two or more strains of the same microorganism, or against two or more microorganisms (Sutter et al., 1999). The valency of a multivalent vaccine may be denoted with a Greek or Latin prefix (e.g., tetravalent or quadrivalent). In certain cases, a monovalent vaccine may be preferable for rapidly developing a strong immune response (Neighmond, 2010).
Heterotypic
Also known as Heterologous or “Jennerian” vaccines these are vaccines that are pathogens of other animals that either does not cause disease or cause mild disease in the organism being treated. The classic example is Jenner’s use of cowpox to protect against smallpox. A current example is the use of the BCG vaccine made from Mycobacterium Bovis to protect against human tuberculosis (Scot, 2004).
1.2 CHALLENGES TO VACCINE UTILIZATION IN NIGERIA
Recent WHO estimates indicate that close to a million children (868,000 children) under the age of office years die in Nigeria each year and this places Nigeria in the second position in terms of global annual childhood deaths after India (Ayene, 2014). The continued low uptake of immunization threatens Nigeria’s efforts at meeting the Millennium Development Goal (MDG) 4, which aims to significantly reduce child mortality. Vaccine-preventable deaths comprise about twenty per cent of childhood deaths (FBA Systems Analyst, 2005). There is no doubt that the major challenges to effective vaccine utilization or routine immunization in Nigeria range from religion, political, lack of storage facilities amongst others as discussed below.
Politics
Politics is most often related to the art and the activities employed to govern a country or society but it can also within good reason be extended to the practice and theory of influencing other people on a civic or individual level (Abdulraheem, et al., 2011). Governance includes the processes of determining policies to address different problems, including health challenges that arise within a state. In the context of routine immunization, politics is relevant to the development of the health system. Questions regarding what policies to adopt with regard to health issues such as routine immunization have a political undertone (Anyene, 2014). Policies regarding the primary health care system within which routine immunization is undertaken in Nigeria is linked to politics. Political issues such as the leadership of Local Government Areas (LGA), allocation to the LGAs et cetera, eventually affects primary health care, as that level of government is mostly responsible for it. It is also important to note in Nigeria that the politics of routine immunization is broadly spread from the top, starting with the Federal Executive Council, the Legislature (NASS), Minister of Health and the Federal Ministry of Health, the Governors, the Commissioners and the State Ministries of Health, to the Local Government Chairmen and all 774 local governments in Nigeria.
Rejection of Routine Immunization
Another problem and challenge facing immunization programmes in Nigeria is the rejection of selected vaccines/vaccination by parents or religious bodies more especially in the northern part of this country (Jegede, 2007; Ankarah, 2005). The reasons for such rejection are outlined below;
Fear and Confusion
Many decision-makers and caregivers reject routine immunization due to rumours, incorrect information, and fear. Attempts to increase coverage must include awareness of people’s attitudes and the influence of these on behaviour. Fears regarding routine immunization are expressed in many parts of Nigeria. Fathers of partially immunised children in Muslim rural communities in Lagos State see hidden motives linked with attempts by non-governmental organisations (NGOs) sponsored by unknown enemies in developed countries to reduce the local population and increase mortality rates among Nigerians. Belief in a secret immunization agenda is prevalent in Jigawa, Kano and the Yobe States, where many believe activities are fuelled by Western countries determined to impose population control on local Muslim communities (Feildein, 2005; Yola, 2003)
Low Confidence and Lack of Trust
Lack of confidence and trust in routine immunization as effective health interventions appears to be relatively common in many parts of Nigeria (Babalola, 2005). A 2003 study in Kano State found that 9.2% of respondents (mothers aged 15–49) evinced ‘no faith in immunization’, while 6.7% expressed ‘fear of side effects. For many, immunization is seen to provide at best only partial immunity, e.g. in Kano and Enugu (Brieger, 2004; Fieldein,2005). The widespread misconception that immunization can prevent all childhood illnesses reduces trust because when, as it must, immunization fails to give such protection, faith is lost in immunization as an intervention, for any and all diseases.
Religious Factors
Nigeria is a very religious country with religion and spirituality permeating all aspects of life. Matters around health, including immunization, are not excluded from this infiltration (Anyene, 2009). Some of the ways in which religion has impacted uptake of routine immunization are described below. Conspiracy theories linking vaccination and fertility control and/or sterilization have been propounded and promoted by religious leaders, particularly in the North including in States with the least immunization coverage rates. One such theory is that polio vaccination and other vaccines are a part of a western plot to sterilize young girls and eliminate the Muslim population (Jegede, 2007). Generally, the Muslim north has the low immunization coverage, the least being 6% (northwest) and the highest being 44.6% (southeast). In Ekiti state (southwest), for example, the northeast and west of Ekiti, with a stronger Islamic influence, has low immunization coverage and also poor educational attainment (Ophori, et al., 2014). Christians have 24.2% immunization coverage as compared to only 8.8% for Muslims (Ankrah, et al., 2005).
Cultural Practices
Cultural practices, like religion and politics, play a key role in the uptake of routine immunization. Immunization directly affects the issue of childrearing and child care and these are issues that have a cultural foundation. Certain cultural practices though acceptable for many years have, however, been found to be detrimental to immunization uptake, child survival and development. While this has been recognized and efforts to counter detrimental cultural practices are undertaken in different parts of the country, they have not always been successful, partly because these cultural practices are sometimes deeply entrenched and other times because there is insufficient engagement with the community and therefore inadequate sensitivity to the issues and education on their harms.
One such cultural practice which occurs in Yobe State is that a woman should remain indoors for 40 days after giving birth. This prevents her from accessing both postnatal care for herself and immunization services for her newborn (Rafau, 2004). In some communities, having babies at home is still the norm. In such situations, the opportunities for immunization, especially the early ones such as BCG and OPV1, given right after birth and six weeks after respectively, may be missed (Ubajaka, et al., 2012).
In some communities, a husband’s permission is required in order for a woman, typically the primary caregiver, to leave the house as well as to give any form of medical treatment or obtain any health services for the child (Mongono, 2013).
https://docs.downloadprojecttopics.com/download/availability-and-storage-of-vaccines-in-community-pharmacies-in-delta-sate/
No comments:
Post a Comment
Opinions Are Highly Appreciated!!!!
Thanks For Dropping Your Comments..... Winny'z Blog